Determination of Pesticide Residues in Commonly Consumed Vegetables

Thiri Kyaw Soe¹, Dr. Yi Yi Myint², Dr. Ei Phyoe Wai², Wai Mi Aung² ¹Department of Traditional Medicine ²Department of Medical Research (Upper Myanmar)

Background information

Pesticides

used extensively on vegetables to obtain a high yield (Raheja^[12])

not used
recommended
dosage
Irrational &
continual use on
vegetable

accumulation in the environment (Howard *et al.*, ^[6])

Organophosphates (OP) and Carbamates

 X^1 or $X^2 = 0$ or S Y = methyl or ethyl R = miscellaneous groups

Synthetic Organophosphorus Pesticides (OPs)

- + most widely used pesticides
- unacceptable levels of environmental residues
 in many countries worldwide
- not persistent, cause broad area pollution from continued use in agriculture and public health (DebMandal *et al.*, ^[3])
- **Carbamates**

Toxic action of OPs and carbamate

▼acetylcholinesterase
accumulation of ACh
Generalized
cholinergic action

rapid, uncontrolled twitching of voluntary muscles paralysis, respiratory failure and death

Health problems associated with chronic pesticide toxicity (long-term low doses exposure)

ancers,
immunological disorders,
congenital malformations,
liver and kidney damage,
neurological disorders,
skin alterations
infertility,
worsening of existing health
blood dyscrasias,
conditions

(Sesline and Jackson^[14], Jobling *et al.*^[7],)

Facts of previous studies

- currently used pesticides in Myanmar were mainly
 OPs (Mya-Thwin and Thet Thet-Mar^[10])
- irrational use of OPs in vegetable agriculture (Steve Butkus and Myint Su^[10])
 - revealed that residual OPs and carbamate
 pesticides in vegetables should be undertaken
 - delivering of safe food to local people in study

Analytical methods

- * Gas chromatographic and high performance
 - liquid chromatographic techniques
 - expensive, time consuming
 - advantage -measuring the amount of pesticides to compare the result with Maximum residue levels

* <u>Test kit</u>

highly sensitive, very easy to use and can provide necessary residue information fastly and reliable results at low price (Zweig, G^[17])

Table-1: Efficiencies of testing GT kit (Thoophom G^[15])

Detection limit	as Trichlorfon = 0.05 mg/kg	
	Value of inhibition 50%	
Efficiencies of kit	Sensitivity	92.3%
	Specificity	85.1%
	Accuracy	87.1%
	Positive predictive value	70.6%
	Negative predictive value	96.6%

Objectives

General Objective

To detect OPs and carbamate pesticide residues
 in vegetables by colorimetric test kit (GT-test
 kit)

Specific Objectives

 To carry out sixty-four kinds of vegetables collection from Ahaya Thuka Market in Nay Pyi Taw in hot season

 To detect OPs and carbamate pesticide residues in sixty-four kinds of vegetables by GT-test kit 12

Materials and Methods

Collection of vegetable samples and analysis

- Sixty-four kinds of vegetables purchased from
 Ahaya Thuka Market in Nay Pyi Taw in hot season,
 2013
- Ω Biochemical Research Unit, DMR (CM)

Asiatic pennywort	Pumpkin	Ash Pumpkin	Bottle gourd	Cauliflower
				A Communication of the second se
Broccoli	Cabbage	Celery cabbage	Apple green eggplant	Green goddess eggplant

Detection on pesticide residues using GT test kit

GT Accessories box

- Plastic holder basket/all equipment/1
- ★ Modified warm water tray /1
- ✤ Plastic dropper /12
- Aquarium air pump with evaporated kit/1
- ✤ Themometer/1
- ✤ Plastic bottle /5
- ✤ Test tube /18
- ✤ Glass dropper /5
- ✤ Rack /1
- Testing handbook/1

Extraction and Detection for pesticide analysis

Finely Chopped & Poured 5g

Added 5ml solvent 1, shook well & left for 15

mins

pipetted 1cc of sample extract & + 1 ml of solvent 2 into a test tube, placed the tube into an Eva. basin Heated solvent 1 L. layer

evaporated

Labelled and filled in 3 new test tubes :" Cut" tube 0.25 cc of solvent 2 "Control"tube: 0.25 cc of solvent 2 "Sample" tube: 0.25 cc of sample extract

Added 0.50cc of GT-1, left for 10 mins

Added 1cc of "mixed solvent GT-3" into each test tubes followed by 0.5cc of GT-4. ← Shake well, add 0.5cc of GT-5, shake well, compared and analyzed the colors with the reference table

GT-2.1 + GT-2 = mixed solvent GT-2GT-3.1 + GT-3 = mixed solvent GT-3

Added 0.375cc of "mixed solvent GT-2" into :" Cut" tube , Added 0.25cc of "mixed solvent GT-2" into "Control" tube and "Sample" tube and leave for 30mins 23

Result Evaluation: compare color in the tubes

Reading result table					
Color in sample tube(s)	Result	Color in sample tube(s)			
Sample tube has less color than control tube.	1. Not Detect	Sample tube has less color than control tube.			
Sample tube has greater color than control tube.	2. Detect but safe to be consumed	Sample tube has greater color than control tube.			
Sample tube has greater color than critical tube.	3. Detect and not safe	Sample tube has greater color than critical tube.			

Results

Results of some vegetables showing no detection

Results of some vegetables showing no detection

color of 28veg. sample tubes ≤ control tube not detected in these vegetable samples

- 1. cauliflower
- 2. chayote
- 3. potato
- 4. carrot
- 5. coriander
- 6. lettuce
- 7. pe-pazun
- 8. babycorn
- 9. french bean
- **10. green goddess eggplant**
- 11. Hawaiian egg plant
- 12. chinese kale
- 13. chinbaung-khar
- 14. pinzein

- 5. gway-dauk
- 16. pyindaw-thein
- 17. water cress
- 18. chayote shoot
- 19. pe-zaung-ya
- 20. okra
- 21. chinese egg plant
- 22. Thai egg plant
- 23. shan-nannan
- 24. sameik
- 25. za-yit
- 26. bean sprout
- 27. long bean
- 28. pe-yote

Results of some vegetables showing detection but safe

Results of some vegetables showing detection but safe for consumption

color of 25 veg. sample tubes > control tube but < cut tube

detection of cholinesterase enzyme inhibition but safe for consumption

- 1. pumpkin
- 2. bottle gourd
- 3. radish
- 4. tomato
- 5. cucumber
- 6. celery cabbage
- 7. garlic
- 8. onion
- 9. taro
- **10. sweet pepper**
- 11. cabbage
- **12. parsley**
- 13. green pea

- 14. spring onion
- 15. kohlrabi
- 16. chili
- 17. roselle
- 18. ribbed luffa
- 19. maize
- 20. broccoli
- 21. pea eggplant
- 22. tong-ho
- 23. mustard green
- 24. chinese eggplant
- 25. ash pumpkin

Results of some vegetables showing detection and unsafe

Results of some vegetables showing detection and unsafe for consumption

color of 11 veg. sample tubes > control tube but = cut tube

- 1. bitter gourd
- 2. morinda
- 3. asiatic pennywort
- 4. indian leek (gyu-myit)
- 5. spinach

- 6. mustard
- 7. mint
- 8. chinese cabbage
- 9. shoot of pumpkin
- 10. bottle gourd
- 11. phat-pal

Detection percentage results of vegetables for OPs and carbamate pesticide residues analysis

	Not	Detected		
Sample	detected	Safe	Unsafe	
	(0%	(< 50%	(≥50%	
	inhibition)	inhibition)	inhibition)	
Vegetables	28	25	11	
64 samples	(43.75%)	(39.06%)	(17.19%)	

Results of vegetables for OPs and carbamate pesticide residues analysis using column chart

Discussion and Conclusion

Assessing the purchasing vegetable

- 28 vegetable samples had no V of cholinesterase enzyme - not detected
- 25 vegetable samples had < 50% ▼ safe for consumer & within in the acceptable safety level
- Ilvegetable samples ≥ 50% ▼ unsafe & not
 removed by washing out

Conclusion

- to increase public awareness of using unsafe vegetables contaminated with pesticide residues
- awareness of the farmers should be raised on safe and judicious use of pesticides
- could not provide specific name and quantity of organophosphate and carbamate

Recommendation

- further study should be survey to vegetables
 farm to know the specific names of pesticides
- pesticide analysis should be carried out by modern analytical techniques (high performance liquid chromatography and gas liquid chromatography)
- more extensive monitoring investigations covering all vegetables from different regions of Myanmar should be carried out to find the exact position of pesticide residues

Acknowledgement

I would like to express my deepest gratitude to our Director General of Department of Medical Research (Central Myanmar) for his allowance to conduct this study. I also thanks to the staffs of Traditional Research Unit, Department of Medical Research (Central Myanmar) for their valuable help in performing this study. This researched was funded by WHO/APW 2012-13 SEMMR1207360 ENVIRH-SOH OSER08.002. SE01.MMR01 Toptask 4.1.

References

- 1. Butkus S and Myint (2001). Pesticide use limits for protection of human health in Inle (Myanmar) watershed. (Living Earth Institute, Olympia, Washington, USA). www.livingearth.org/inle.html
- 2. Cox JR (1995). Training Manual. In: Pesticide Residue Analysis. Natural Resources Institute. Chatham, kent, U.K.
- 3. Deb Mandal, M., S. Mandal and N.K. Pal (2002). Evaluation of bioremediation potential of organophosphorus pesticide dimethoate (E.C) by heavy metal and antibiotic resistant *Proteus vulgaris* isolated from Ganges at Sreerampore. *India Research Journal of Chemistry Environment*, 6: 49-52.

- 4. Gobo, A.B., M.H.S. Kurz, I.R. Pizzutti, M.B. Adaime Practices and R. Zanella (2004). Development and validation of methodology for the determination of residues of organophosphorus pesticides in tomatoes. *J. Brazilian Chemical Society*, 15: 945-950.
- 5. Guilhermino L., Soares A., Tinoco-Ojanguren R. and Osten J. (2004). Effect of pesticide exposure on acetylcholinesterase activity in subsistence farmers from Campeche, Mexico. *Archives of Environmental Health; 3: 1-30.*
 - Howard, P.H., G.W. Sage, W.F. Jarvis and D.A.Gray (1990). Handbook of environmental fate and exposure data for organic chemicals. Volume IV: Chelsea, Mich., Lewis Publishers, Inc., pp: 578.

- 7. Jobling S., Reynolds T., White R., Parker M. and Sumpter J. (1995). Chemicals found to mimic human estrogens. *Environmental Health Perspectives;* 103: 582-587.
- 8. Kumar, M., S.K. Gupta, S.K. Garg and A. Kumar (2006). Biodegradation of hexachlorocyclohexane-isomers in contaminated soils. Soil Biology and Biochemistry, 38: 2318-2327.
- 9. Mukherjee, I (2003). Pesticides Residues in Vegetables in and around Delhi. Environ. Monitoring and Assessment, 86: 265-271.

- Mya-Thwin, Thet-Thet-Mar (2002).Current status of pesticides residue analysis of food in relation with food safety. Available from: URL: http://www.fao.org/docrep/MEETING/004/AB429E.HTM
- 11. Podolska M. and Napierska D. (2006). Acetylcholinesterase activity in hosts (herring *Clupea harengus*) and parasites (*Anisakis simplex* larvae) from the southern Baltic. *ICES* (*International Council for the Exploration of the Sea*) *Journal of Marine Science;* 63(1): 161-168.
- 12. Raheja, A.K (1995). Practice of IPM in south and south east Asia, pp. 69-119. **In:** *Integrated Pest Management in the Tropics* (Edited by A.N. Mengech, K.N. Saxena and H.N.B.Gopalan). John Wiley & Sons, Singapore.

- 13. Round up of pesticide regulation in Asia. Available from: URL: http://<u>www.pan-uk.org/pestnews/issue/pn29/pn</u>29p11.htm.
- 14. Sesline D.H. and Jackson R.J. (1994). The effects of pre-natal exposure to pesticides. In:*Pre-natal Exposure to Toxicants: Development Consequences.* Needleman H.L. and Bellinger D. (Eds.); The John Hopkins University Press, Baltimore, p233-248.
- 15. Thoophom G (B.E.2542). Screening of Organophosphorous and/or Carbamate Pesticide Residues analysis in vegetables and fruits by GT-reagents test kit. SOP No.10 02 113. Division of Food. Dept. of Medical Sciences.

- 16. Wang, L., Y. Liang and X. Jiang (2008). Analysis of eight organophosphorus pesticide residues in fresh vegetables retailed in agricultural product markets of Nanjing, China. Bulletin of Environ. Contamination and Toxicol. 81: 377-382.
- 17. Zweig G (1963). Analytical methods for pesticides plant growth regulators and food additives, V1. New York: Academic press INC. (London) LTD.

