GC-MS Analysis and Antioxidant Activity of Leaves of *Aegle marmelos* L. Correa (Ok-shit)

Lei Lei Win¹, Ei Ei Htway¹, Khaing Khaing Mar¹, Khin Lay Sein¹, Kyawt Kyawt Khaing¹, Kyi San¹, Kyaw Min Aung¹, Aye Min Maw¹, and Khaing Khaing Kyu²

Department of Medical Research
 Department of Chemistry (University of Mandalay)

Introduction

- Medicinal plants has been increasing all over the world due to minimal toxicity, cost effective, pharmacologically active
- Provide easy remedy for many human ailments when compared to synthetic drug⁽¹⁾
- WHO estimated 75% of population in developing countries applied traditional medicine for primary health care ⁽²⁾
- Phytochemicals are bioactive chemicals of plant origin, and known as secondary metabolites and provide health benefits to human illness ⁽³⁾
- Gas chromatography mass spectrometry (GC-MS) provides advantage of both chromatography as a separation method and mass spectrometry as an identification method ⁽⁴⁾

Introduction (Contd.)

- Fourier Transform Infrared Spectrophotometer (FTIR) is the most powerful tool for identifying the functional groups present in compounds ⁽⁵⁾
- Many researchers have been studied for more cost effective and active phytochemical which possess antioxidant activity
- Thin layer chromatography, TLC- bioautogarphy and *In- vitro* DPPH radical scavenging methods are useful for finding of new antioxidants from plant extract ⁽⁶⁾

Introduction (Contd.)

- Aegle marmelos L. Correa, popularly known as Bael tree, Ok-shit in Myanmar, belongs to family Rutaceae
- distributed India, Sri Lanka, Myanmar and Thailand ⁽⁷⁾
- * Aegle marmelos edible & possess many medicinal properties
- Crude extracts of Ok-shit antioxidant, antidiabetic, anticancer, anti-hyperlipidaemic, anti-inflammatory, antimicrobial activities on various animal models ⁽¹⁾
- Young fruit Traditional Medicine Formulation No 41 (Wunmeetauk Hsay)⁽⁸⁾
- Antihyperglycemic activity by Soe Sandar Phyo *et al.*, 2015
 lipid lowering effect on Wistar Albino rats by Aye Aye Mya,
 2016, antibacterial activities by Lei Lei Win *etal.*, 2018^(9,10,11)
- Anti-diarrhoeal activity of unripe fruit of 2న్నిల్ was studied by Khin Tar Yar Myint *et al.*, 2017 ⁽¹²⁾

Scientific evaluation

bioactive constituentsantioxidant activity

Ok-shit leave has not been published yet, in Myanmar

General objective

To evaluate chemical compositions, antioxidant activity, total phenolic content and acute toxicity study of leaves of *Aegle marmelos* L. Correa (Ok-shit)

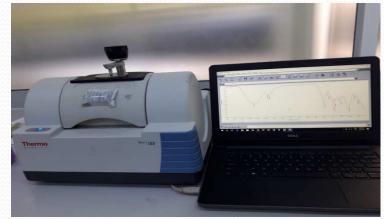
Specific objectives

- * To find out phytochemical constituents of Ok-shit leaves
- ***** To investigate bioactive constituents from Ok-shit leaves
- To assign the functional groups of ethanolic extract of Okshit leaves
- * To measure antioxidant activity of Ok-shit leaves
- To determine phenolic content of Ok-shit leaves
- ***** To evaluate LD₅₀ of extract by acute toxicity test

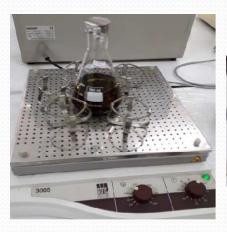
Materials

Analytical grade reagents

- Ethanol, Methanol, n- Hexane, Ethyl acetate (Merck)
- L -Ascorbic acid (BDH, England)
- 1, 1- diphenyl-2-picryl-hydrazyl (DPPH) (Merck)
- Gallic acid
- Sodium carbonate
- Folin- Ciocalteu reagent (Merck)
- Thin layer chromatography (TLC) silica gel plate (F245)
- **VICR** (Institutional Cancer Research) mice


Materials (Contd.)

Gas Chromatography - Mass Spectrophotometer (GC-MS), QP-2020



GFL Orbital Shaker (Germany)

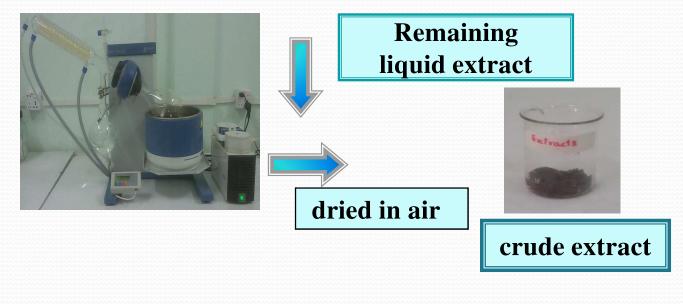
UV-Lamp (Lambda-40) Perkin-Elmer Fourier Transform Infrared Spectrophotometer FTIR, Nicolet is5 (Thermo Scientific)

Rotary Evaporator UV- Visible Spectrophotometer (UV 1601 PC)

Methods

Plant authenticity

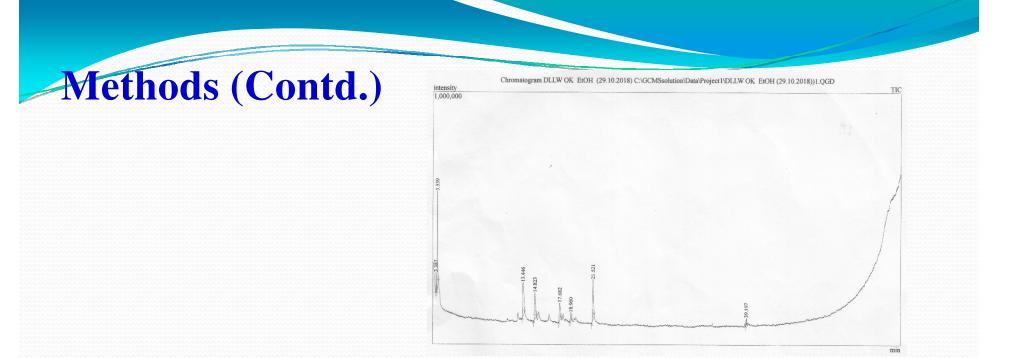
Collected fresh samples with their inflorescences were studied and identified for specific botanical name by competent taxonomist⁽¹³⁾


Sample Collection

Fresh leaves samples

Pyin Oo Lwin township, Mandalay Region, in May 2017

GC-MS analysis; 1 mL Filtrate -diluted with solvent 1:3 ratio



Phytochemical tests for types of compounds Raaman (2006) Phytochemical Methods⁽¹⁵⁾

Gas Chromatography- Mass Spectrometry Analysis⁶

- methyl silicone coated fused -silica capillary column DB-5 MS (0.25 mm i.d. x 30 m, 0.25 μm film thickness) autosampler and autoinjector (AOC-20 i +s)
- injection temperature 250 °C
- interface temperature 230 °C
- ion source temperature 230 °C
- electron impact (EI, 70 eV)
- oven temperature- 100 °C, increase 2 °C min⁻¹ to 150 °C ramped up at 5 °C min⁻¹ to 310 °C
- Helium gas flow rate of 1.57 ml min⁻¹
- * mass range 40–650 *m/z*

- set in the set of t
- heights of peak indicate relative concentrations of components present in sample
- Iarge compound fragments into small compounds giving rise to appearance of peaks at different mass by charge (m/z) ratios

10 30

50

110 130

mass spectrometer

- nature
- structure of compounds eluted at different times

Bioactive components
unknown components
known compound
similarity index (SI)
molecular formula (MF)
molecular weight (MW)
molecular structure

National Institute Standard and Technology (NIST) Libraries

150 170 190 210 230 250 270 290 310 330 350 370 390 410 430 450 470 490

FTIR Spectroscopic Analysis

- **Nicolet is5** FTIR spectrophotometer,
- Detection characteristic of peaks & their functional groups (Attenuated Total Reflectance) accessory
- IR scan 4000-650 cm⁻¹ (mid infrared range) ^{15,16}
- Delta Science Company Limited

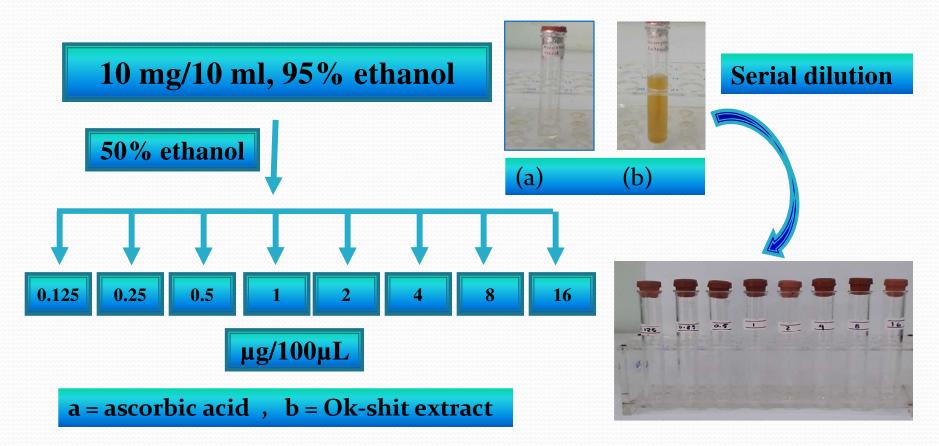
Thin Layer Chromatography

- TLC silica gel plate in solvent pre saturated glass chamber
 n-hexane: ethylacetate (1:1)
- under UV light (365 nm and 254 nm
 - R_{f =} Distance travelled by the compound Distance travelled by the solvent front

TLC-bioautography analysis 0.25% DPPH in methanol sprayed - dried TLC plate yellow spots against purple background noted the R_f value⁶

Measurement of *In-vitro* Antioxidant Activity^{17,18}

Preparation of freshly prepared DPPH solution (60 μM)

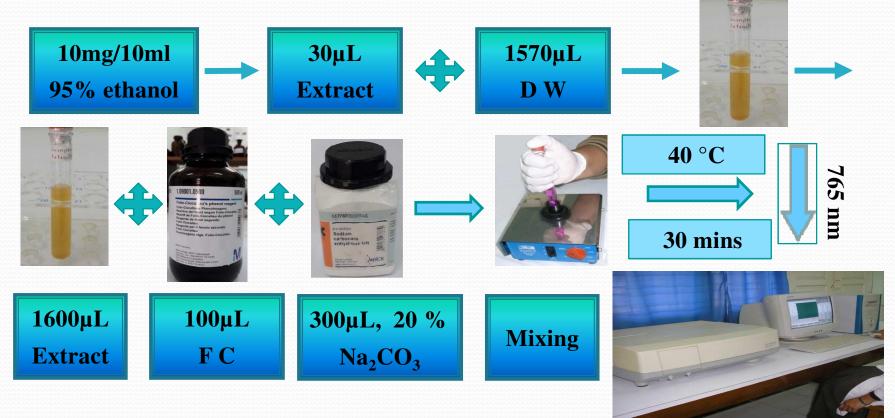


Final solution in volumetric flask

Preparation of different concentrations of ascorbic acid and Ok-shit extracts


The scavenging reaction between DPPH and test sample of an antioxidant

{ sample expressed in terms of 50% inhibition concentration (IC₅₀)}


Determination of total Phenols¹⁹

Preparation of Gallic Acid Standard Curve

Determination of total Phenols

Preparation ethanolic extract of Ok-shit

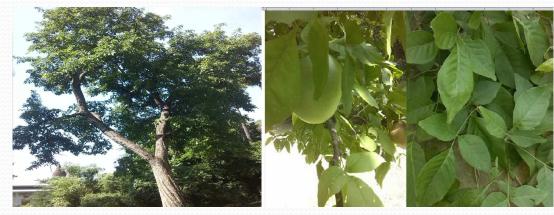
Acute toxicity test of ethanolic extract Ok-shit leaves

- Iimit test at the dose of 5000 mg/kg, OECD 425 guideline
- fasted food for 3-4 hours
- * dose was calculated upon fasted body weight
- single dose administration, food may be withheld 1-2 hours²⁰
- * observed for 24 hours, changes in behavioral responses
- * 14 days recorded with individual work sheet
- LD₅₀ was calculated by AOT 425 Stat program (US Environmental Protection Agency)²¹

Statistical Analysis

Microsoft Excel v. 2007

- Antioxidant activity- Linear regression equation "Y= a X + b"
- ***** Total phenolic content- Gallic acid standard curve



Results and Discussions

Botanical Identification

collected fresh samples were identified Department of Botany, University of Mandalay

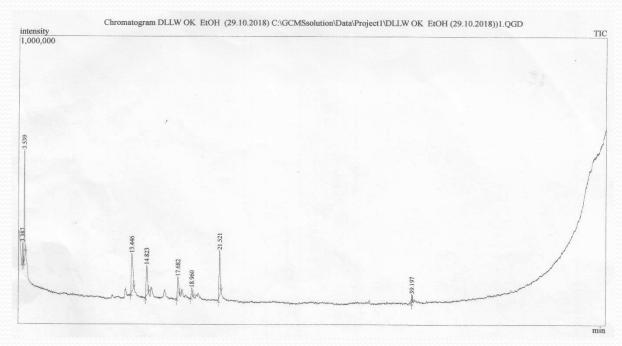
Aegle marmelos L. Correa

Extracts of Ok-shit leaves

Yield percent- 95% ethanolic extracts - 33.09%

Table 2. Phytochemical constituents of Ok-shit leaves

No.	Phytochemical	Reagents	Observation	Result					
1.	Alkaloids	Dragendorff's solution	Orange ppt	+					
2.	α amino acid	Ninhydrin	Pink color	+					
3.	Carbohydrate	α –naphthol, Con: H ₂ SO ₄ solution	Pink ring color	+					
4.	Flavonoids	Con: HCl, Mg turning	Reddish brown	+					
5.	Glycosides	10 % lead acetate solution	Yellow ppt	+					
6.	Phenols	10% Fe Cl ₃ solution	Blue	+					
7.	Protein	10 % Na OH, 10 % CuSO ₄ solution	Red or Violet	+					
8.	Reducing sugar	Benedict's solution	Brick red ppt	+					
9.	Saponins	H ₂ O, Shaken 15 minutes	2 cm foam	+					
10.	Starch	Iodine solution	Blue	_					
11.	Steroids	acetic anhydride, Con:H ₂ SO ₄ solution	Greenish blue Solution	_					
12.	Tannins	1% Fe Cl ₃ , Dil: H ₂ SO ₄ solution	Yellowish brown	+					
13.	Tri-terpene	CHCl ₃ , acetic anhydride, Con: H_2SO_4 solution	Reddish brown coloration	+					
(+)	(+) = Detected (-) = Not detected								


In phytochemical analysis

Ok-shit leaves -alkaloids, carbohydrates, flavonoids, glycosides, phenols, protein, reducing sugar, saponins, tannins and tri-terpene

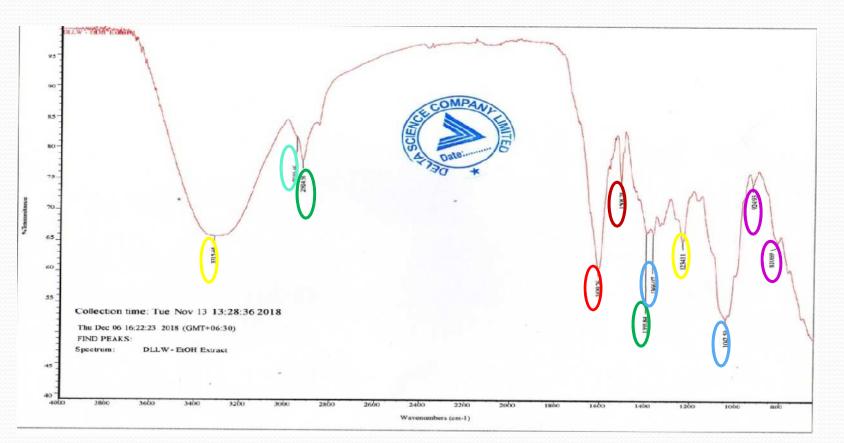
* alkaloids, flavonoids, phenols & tannins –antioxidant activity¹¹

Gas Chromatography - Mass Spectrometry Analysis

- Eight compounds were identified
- The retention time and peak area percent of various compounds were presented in figure 1 and table 2

Fig 1. GC-MS chromatogram of ethanolic extract of Ok-shit leaves

Table 2. Bioactive compounds from ethanolic extract of Ok-shit leaves


Sr No	RT (min)	SI	Name	MF	MW	Peak Area %	Library	Compound nature	Activity ^{22,23,24,25}
1	3.39	94	α- pinene	C ₁₀ H ₁₆	136	4.01	NIST 107 LIB	Mono- terpene	antioxidant, anticancer, Antiseptic, antimicrbial anti-inflammatory
2	3.54	96	β-ocimene	C ₁₀ H ₁₆	136	24.79	NIST 14 lib	Mono- terpene	Antifungal
3	13.45	95	1-ethenyl-1-methyl-2,4-bis (1-ethylethenyl) -[1S-(1- alpha., 2 beta.,4 beta)], Cyclohexane	C ₁₅ H ₂₄	204	21.69	NIST 21 LIB	Cyclo alkane	Antibacterial
4	14.82	96	caryophyllene	C ₁₅ H ₂₄	204	15.5	NIST 14 lib	Bicyclic Sesqui- terpene	antioxidant , antitumor, anxiolytic, antibacterial , analgesic, neuroprotective anti-inflammatory
5	17.68	92	β-copaene	C ₁₅ H ₂₄	204	9.67	NIST 14 lib	Triclic Sesqui- terpene	Antioxidant
6	18.96	92	8-Isopropenyl-1,5-imethyl- 1,5-cyclodecadiene	C ₁₅ H ₂₄	204	3.87	NIST 14 lib	Terpene	anticancer, anti-inflammatory
7	21.52	81	germacrene	C ₁₅ H ₂₄	204	18.93	NIST 14 lib	Sesqui- terpene	antioxidant, antimicrobial, insecticidal
8	19.36	92	9-octadecenoic acid (Z) - methyl ester	C ₁₉ H ₃₆ O ₂	296	1.53	NIST 14 lib	Fatty acid ester	antioxidant, antifungal, antimicrobial, anticarcinogenic, hypocholesterolemic

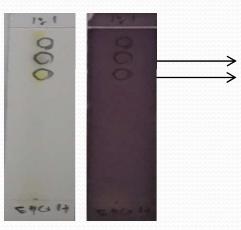
According to GC-MS analysis

 cight bioactive compounds - possess many medicinal properties α- pinene, caryophyllene, β-copaene, germacrene and 9-octadecenoic acid (Z) -methyl ester - antioxidant activity
 α-pinene, ocimene, caryophyllene, copaene & germacrene from current study agreed with following two studies
 Rathee D. *etal.*. 2017, - volatile oil of bael leaves presence of α-pinene, caryophyllene, α-ocimene, and α-copaene ⁶
 Satyal P.*etal.*, 2012, - essential oil of bael leaves contained limonene, (E)-β-ocimene, germacrene B, (E)- caryophyllene²⁶

FTIR Spectroscopic Analysis

The results of FTIR analysis were presented in Fig. 2 and Table 3

Figure (2) FT-IR Spectrum of ethanolic extract of Ok-shit leaves


Table 3. FT-IR Assignments of ethanolic extract of Ok-shit leaves

No	Wave number (cm ⁻¹)	Functional groups					
1.	3315.44	O-H stretching vibration of hydroxyl group					
2.	3010.46	C-H stretching vibration of sp ² hydrocarbon					
3.	2924.91	C-H stretching vibration of sp ³ hydrocarbons					
4.	1609.26	C=O stretching vibration of carbonyl group					
5.	1508.28	C=C stretching vibration					
6.	1395.84	C-H bending of sp ³ C-H group					
7.	1366.07	C-C-O stretching vibration of ester group					
8.	1234.11	O-H bending vibration					
9.	1042.59	C-O stretching vibration of ester group					
10.	924.93	C-H bending vibration of trans or E alkenic goup					
11.	810.69	C-H bending vibration of cis or Z alkenic goup					

TLC-bioautography analysis

Antioxidant potential of compound on TLC plates identified with DPPH reagent,

- the yellowish bands on the purple background
- R_f value 0.75 and 0.85

Yellow antioxidant fraction

- Fig 3: Thin Layer Chromatogram and Bioautograph for antioxidant fraction
- TLC-bioautography analysis- distinct yellow region against DPPH

Measurement of *in-vitro* antioxidant activity

- Antioxidants are significant prevention of human ageing
- * % inhibition of ascorbic acid 40 to 100% ($\mathbb{R}^2 = 0.9933$)
- % inhibition of Ok-shit extract 41.98 to 63.96% (R² = 0.98) at different concentrations ranging from 0.125- 16 μg/100μL

IC₅₀ values ★ ascorbic acid - 2.7µg/mL ★ Ok-shit extract - 49.7µg/mL

Table 4. Mean percent inhibition and IC50 values of Ok-shitextract and ascorbic acid

		Concentration (µg/100µL)/ % inhibition							IC ₅₀	
Sr. No	Sample	0.125	0.25	0.5	1	2	4	8	16	(µg/mL)
1.	Ascorbic acid	40	50.27	64.82	90.16	100	100	100	100	2.7
2.	OK-shit Extract	41.98	42.75	43.66	45.03	47.48	49.61	54.96	63.96	49.7

Results (Contd.)

Determination of total phenols

determined by Folin- Ciocalteu reagent
Gallic acid standard curve equation

 $y = 0.0516x + 0.0844, R^2 = 0.9963$

phenolic content of Ok-shit leaves - 47 mg GAEs/g

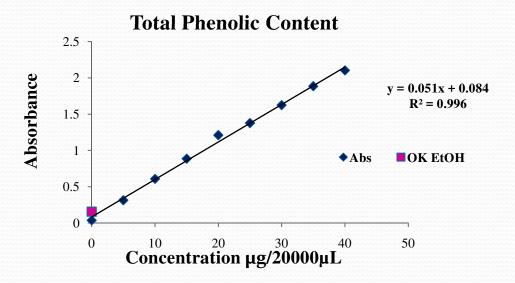


Fig 5: Standard curve of Gallic acid

direct correlation - antioxidant activity & phenolic content
our study results, ascorbic acid & Ok-shit extract IC₅₀ values 2.7µg/mL & 49.7µg/mL, phenolic - 47 mg GAEs/g comparable to
Raja *et al* (2017), - aqueous extract of bael leaf, IC₅₀ = 125µg/mL and total phenolic content = 40.84mg/g ¹⁸
Wali *et al* (2015), - methanolic extract of bael leaf IC₅₀ = 249.3 µg/mL and phenolic content = 16.5mg GAEs/g²⁵
Gupta *et al* (2014), - ascorbic acid and methanolic extract of unripe fruit of *Aegle marmelos* were IC₅₀ value of 2.8µg/mL and 62.59µg/mL respectively²⁷

Acute Toxicity

- OECD 425 guideline
- Hakim et al. (2003), ethanolic extract of Ok-shit leaves - non-toxic²⁸, limit test was used
- No toxic signs and lethality up to 14 days
- Skin and fur changes, eyes, mucous membrane, respiratory rate, motor activity and behavioral pattern were found to be normal
- Salivation, convulsion, cyanosis, tremors, & diarrhoea did not occur in all animals
- LD₅₀, above 5000 mg/kg
- Ok-shit leaves are acute safe for consumption

Qualitative and Quantitative variations of same species

- * difference in geographical location
- climatic conditions
- time of harvest
- habitat of plant samples
- part used
- extraction method
- type of solvent and
- other environmental factors

Conclusion

- scientifically proved that the presence of bioactive constituents, antioxidant activity, phenolic content and acute toxicity study of ethanolic extract of Ok-shit leaves
- antioxidant activity and phenolic content were related to bioactive constituents resulting from GC –MS chromatogram
- ethanolic extract of Ok-shit leaves exhibited antioxidant properties may be suggested new potential sources of antioxidant
- recommended as a highly antioxidant plant for traditional healers and acute safe for consumption

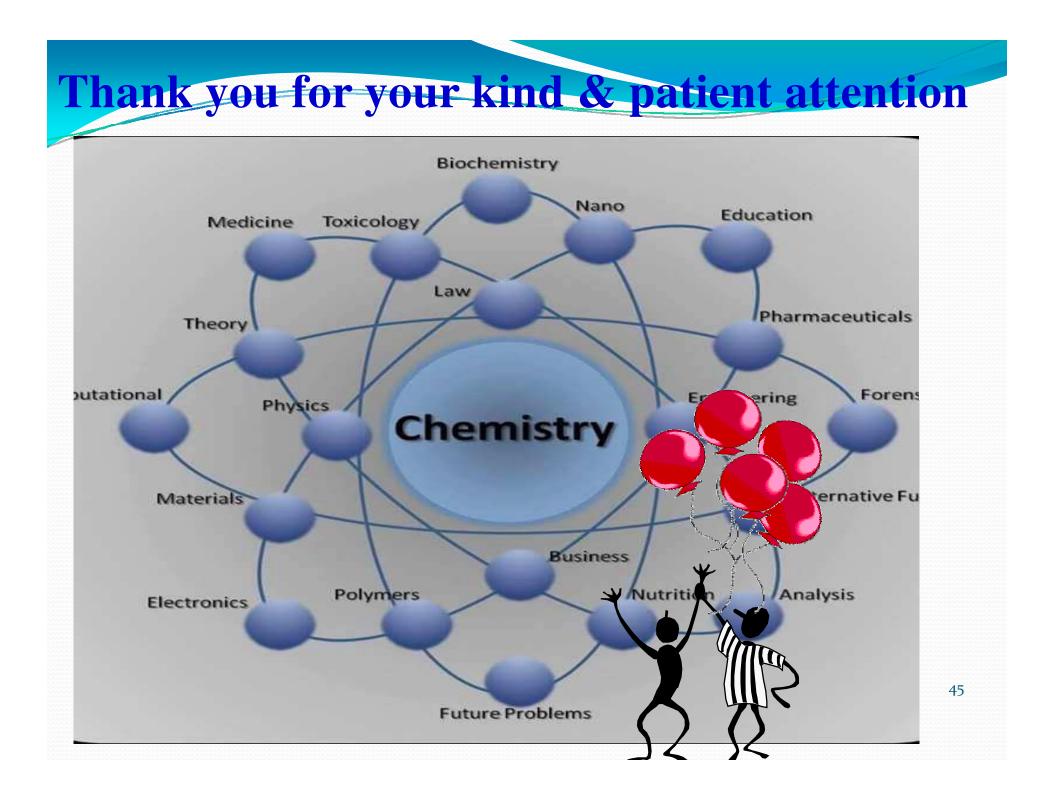
The authors would like to respectfully acknowledge to

- Director General
- Board of Directors
- Dr Khin Tar Yar Myint
- Daw Sandar Lin (Department of Medical Research)
- Dr. Soe Myint Aye, Pro-Rector
 - (University of Myitkyina)
- all of colleagues, who have willingly helped us throughout with their ability

References

- Mujeeb F, *etal.*. Phytochemical Evaluation, Antimicrobial Activity, and Determination of Bioactive Components from Leaves of *Aegle marmelos*. *BioMed Research International*. 2014; Article ID 497606, 11 page.
- 2. Nyamai DW, *etal.*. Medicinally Important Phytochemicals: An Untapped Research Avenue. *Research and Reviews: Journal of Pharmacognosy and Phytochemistry*. 2016; 4(1):35-49.
- 3. WHO (2013) WHO Traditional Medicine Strategy: 2014–2023. World Health Organization, Geneva.
- 4. ngole S.N. and Kaikade.R.S. GC-MS Analysis of *Aegle Marmelos* Correa Ex Roxb. (Rutaceae) Leaf Methanol Extract. *International Research Journal of Natural and Applied Sciences*. 2017; 4 (2): 38-45.
- 5. Khatri P. *et al.* Phytochemical Screening, GC-MS and FT-IR Analysis of Methanolic Extract Leaves of *Elettaria cardamomum*. *International Journal of Research* - GRANTHAALAYAH. 2017; 5(2): 213-224.
- Victoria.T.D., *etal.*. A Study on Bioassay Guided Identification of Antioxidant Property, Invitro Cytotoxicity and Anticancer Potential of *Aegle Marmelos* Crude Extract *International Journal of Pharma and Bio Sciences*.2015; 6(2): (B) 260 – 266.

References (Contd.)


- 7. Rathee D, *etal.*. Gas chromatography-mass spectrometry analysis of volatile oil obtained from *Aegle Imarmelos* leaves collected from foothills of Shivalik range. *International Journal of Green Pharmacy*. 2017; 11 (3):206-210.
- 8. Myanmar Traditional Medicine Formulary, Department of Medical Research (Lower Myanmar), Ministry of Health, The government of the Republic of the Union of Myanmar, 2013, 280-285.
- 9. Soe Sandar Phyo *etal*. Phytochemical Investigation and Antihyperglycemic Activity of Leaves of of Aegle Marmelos (L.) Correa (29)δ). 1st Myanmar Pharmacists' Research conference. 2015; p11.
- 10. Aye Aye Mya (2016). Lipid Lowering Effect of Ethanolic Extract of Leaves of Aegle Marmelos (L.) Correa (Ok-Shit) in Wistar Albino Rats. Master of Medical Science (Pharmacology).
- 11. Lei Uin *et al.* Elemental Composition, Phytochemical Screening and Antibacterial Activity of *Aegle marmelos* (L.) Correa (ဥသ္သစ်). 8th Traditional Medicine Research Congress.
- 12. Khin Tar Yar Myint *et al.* Standardization, Safety Evaluation and Antidiarrhoeal Activity of Unripe Fruit of *Aegle marmelos* L. (Rutaceae) مجافعة معرفة معرفة معرفة معرفة المحافة الم

References (Contd.)

- 13. Dassanayake MD. A Revised Handbook to the Flora of Ceylon. Vol. VI, Amerind Publishing Co. Pvt. Ltd., New Delhi, 1987; 274-289.
- 14. Handa S.S. *etal.*. (2008). Extraction Technologies for Medicinal and Aromatic Plants. *INTERNATIONAL CENTRE FOR SCIENCE AND HIGH TECHNOLOGY*.
- 15. Raaman N. 2006, 'Qualitative phytochemical screening', in: Phytochemical Techniques, *New India Publishing agency*, New Delhi: Pitampura; 19-24.
- 16. Silverstein R.M. *et al.*, (2005), "Spectrometric Identification of Organic Compound". 7th Edition, John Willy & Sons, Inc. USA.
- 17. Raja W.W. *et al.* Estimation of some phytoconstituents and evaluation of antioxidant activity in *Aegle marmelos* leaves extract. Journal of Pharmacognosy and Phytochemistry. 2017; 6(1): 37-40.
- 18. Wali A. *et al.* Antioxidant Potential and Phenol Profile of Bael Leaf (*Aegle marmelos*) *Indian J Agric Biochem*.2015; 28 (2): 138-142.
- Gabriel, A. A., *etal.*. Folin- Ciocalteau Reagent for Polyphenolic Assay. *International Journal of Food Science, Nutrition and Dietetics*. 2014; 3(8): 147-156.
- 20. Organisation for Economic Co-operation and Development (OECD) (2008). Acute oral toxicity- up and down procedure. In: *OECD Guideline for Testing of Chemicals* 425, 1-27.

References (Contd.)

- 21. Loomis TA and Hayes AW. (1996). Toxicologic testing methods. In: Loomis' Essentials of Toxicology. 4th Edition, Academic press, USA, 212-213.
- 22. Duke J.A. (1992). Handbook of Biologically Active Phytochemicals and Their Activities, CRC Press.
- 23. Btissam R. *et al. In vitro* study of anti-glycation and radical scavenging activities of the essential oils of three plants from Morocco. Origanum compactum, Rosmarinus officinalis and Pelargonium asperum. *Phcog J.* 2015; 7 (2):124-135.
- 24. Sen.D.J. Oregano: the mountain of joy on taste buds. *World Journal of Pharmaceutical Sciences*. 2016; 4(12): 226-234.
- 25. Maqtari M.A.A. *et al.* Chemical Composition and Antioxidant Activity of the Essential Oils from Different Aromatic Plants Grown in Yemen. *Journal of Global Biosciences.* 2014; 3(1): 390-398.
- 26. Satyal P. *et al.* Essential oil constituents and biological activity of *Aegle marmelos* L.Corr. Serr. from Nepal. *Journal of Medicinally Active Plants*. 2012;1(3):114-122.
- 27. Gupta D., *et al.* Evaluation of Antimicrobial and Antioxidant Activity of Unripe and Half Ripe *Aegle Marmelos* Corr. Fruits. *World Journal of Pharmacy and Pharmaceutical Sciences.* 2014; 3(2):1378-1392.
- 28. Hakim A. *etal.*. Study of the antihyperlipidemic, antioxidative and antiatherogenic activity of *Aegle marmelos* Linn. in rabbit receiving high fat diet. *Asian Journal of Pharmaceutical and Clinical Research*. 2012; 5 (4), 69-72.

